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Abstract

Nonlinear response of a flexible curved panel

exhibiting bifurcation to fully developed chaos is

demonstrated along with the sensitivity to small

perturbation from the initial conditions. The response
is determined from the measured time series at two

fixed points. The panel is forced by an external

nonharmonic multi frequency and monofrequency

sound field. Using a low power time-continuous
feedback control, carefully tuned at each initial

condition, produces large long-term effects on the

dynamics toward taming chaos. Without the

knowledge of the initial conditions, control may be

achieved by destructive interference. In this case, the

control power is proportional to the loading power.
Calculation of the correlation dimension and the

estimation of positive Lyapunov exponents, in

practice, are the proof of chaotic response.

|. Background

Dynamical instability and chaos are now

established to be common features of many nonlinear

processes in engineering, physics, climatology,

medicine, astronomy, biology, and ecology. Chaos
manifests beneficial as well as destructive effects.

Detecting nonlinearity is considerably easier than

identifying chaotic dynamics. Positive identification
of chaos is obtained by estimating the correlation

dimension and the Lyapunov exponent from an

experimental time series. Structural dynamics and

acoustics responses have demonstrated the existence

of strong nonlinear behaviors when forced by high

acoustic loading; as a result, appropriate dynamical

control techniques have been implemented to

stabilize the system. The control algorithm proposed

by Ott, Grebogi, and Yorket has been used in many

applications to stabilize an unstable periodic orbit

through the application of small, carefully selected

perturbations aimed at establishing control over
chaos response. 2-8

The present experiment is designed to control

the chaotic response via initial conditions by

changing the system dynamics on a curved panel

structure loaded by high intensity sound. Instability

and chaos are two of the main concepts associated

with nonlinear vibration, which have revolutionized

our understanding about the response of a dynamical

system. Because there is no universal set of eigen
functions for a nonlinear system, most data analyses

are performed in time domain. Deterministic data

have complicated dynamics, and prediction is

impossible over extended time; however, we do the

experiments to gain insight into our limitations set by

nonlinearly. TM In our experiments, the linear system

fails to describe the structure response forced by high

intensity sound. Stochastic measurements are not

useful because they concentrate on their average
such as correlation coefficient and autocorrelation

function, and they are not able to distinguish
between the data from the linear system and those

from the nonlinear system, whereas short term
reveals the time limit of a reliable prediction. One

cannot repeat the experiment exactly because of the

changes in the initial condition, since it is one of the

most peculiar features of a nonlinear chaotic

response, Abarbanel. t2 In a previous experiment, a

panel forced by constant or accelerated flow and
sound exhibits different dynamics; this indicates the

dependency on the unpredictable initial condition in
each run. 8, 13 Furthermore, tension and curvature of

the structure depend on the loading, and they

constitute a coupling with the response; one

manifestation is the spontaneous surface deformation.

Some related problems are elastic structure forced by

jet noise, turbulent boundary layer at constant and

accelerated speed, and flutter behaviors such as wing
and panel with various nonlinearities, la-19 Another

example related to medical science is that the heart
under normal conditions has a periodic rhythm;

however, as one nears a heart attack, it becomes

chaotic. 2° Experimentally we explore how chaotic

response of a flexible curved panel forced by an

l
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external single and nonharmonic multifrcquency

sound can be controlled by using active control with

the knowledge of the initial condition. Without the

knowledge of the initial condition, control is

achievable by the equilibrium of forces and by

damping. 21 Traditional control methods have avoided

chaotic responses, which comprise a large and rich

part of the physical system.

The initial condition is unknown in a time series

of unknown origin. Therefore a technique is

introduced to determine the initial condition by using

the time series of the experimental data. 1°,22.23
From the data, we want to determine whether the

system response is chaotic by using techniques

drawn from classical dynamics. One can argue that

the time series has been generated by random field;
however, the definition of chaos includes three

elements: (a) determinism, (b) aperiodicity, and (c)

sensitive dependence on initial conditions, Ruelle 24

and Abarbanel. 25 This paper begins by describing the

instrumentation followed by the description of a

technique used to determine the initial condition and

by the description of the panel response and the

method used for active control. The paper is

organized as follows: Section 2 discusses

instrumentation. Analysis of the data is reported in

section 3. Results are given in section 4, with

section 4.1 describing the wall pressure, section 4.2

describing the panel response, section 4.2.1
describing a search of initial condition, section 4.2.2

describing panel response and active control from

multifrequency sound, and section 4.2.3 describing

panel response and active control from

monofrequency sound. Section 5 discusses the

correlation dimensions and Lyapunov exponents.

2. Instrumentation

The experiment is set up to study the nonlinear

response of panels excited by plane acoustic waves

at normal and oblique incidences. The panels are

curved airplane fuselage types made of aluminum

machined from a plate into two panels separated by

a longitudinal tear stopper with a 0.5-cm radius of

curvature to minimize the amplitude of the reflected
and transmitted waves. The structure is 0.609 m

wide, 1.019 m long (l/3 of the actual length), and

0.0109 cm thick, with a radius of curvature of 2.529

m. The panels are mounted in a rigid absorbing

partition dividing two anechoic rooms, the source

and the transmission rooms. (See Figure 1.) The

acoustic sources are created by four 120-Watt phase-

amplitude matched speakers mounted on a diffuser

facing the structure with 138 dB acoustic power at

687 Hz. The wall pressure fluctuations are measured

with miniature pressure transducers mounted flush

within the tear stopper between panels. The vibration

response is measured with two miniature

accelerometers located at one-quarter length and

three-quarter length of the panel on the centerline.

The transmitted pressure is measured with a pressure
transducer. All measurements are made from direct-

current response.

3. Experimental Techniqoe and Data Analysis

The nonlinear time series for short-time signal

processing is the basic tool used to analyze the

experimental data. They are applied to input and

transmitted pressure and panel response. A limited

number of dynamic variables and positions can be

measured on the panel. The key element in resolving

the problem is that the full system phase space has

one-to-one correspondence with the measurements of

a limited number of point and variables. Local

properties of the dynamics are as follows:

1. Energy variance is a technique used to
locate unstable orbit and consists of time-

series, spectrum, phase portrait, probability,

and Poincar6 map
2. Initial condition determines whether the

trajectory of the attractor diverges

exponentially
3. Correlation dimension is the number of

degrees of freedom

4. Lyapunov exponent gives the statistical

quantities that indicate uncertainty

The time history of the wall pressure fluctuation

and panel acceleration is measured, and the power

spectral density, the phase portrait, and the

probability distribution are computed from it. For a
nonstationary signal q(t,x), such as the pressure

fluctuation p(t,x) of the panel acceleration

g(t,x), the instantaneous power spectrum at instant T

is defined by

P(f, T) = _ fT+I/2T_I/2exp (i2r_ft) q(t, x) at 2

where T is chosen so that the experimental run

contains the interval T-l/2,T+I/2 for a sufficiently

2
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large I. The probability density of _(T, x) is denoted

by Q(r,T), where

l fret�'.
q(T,x) = 7 "T-I�'. q(t,x) at

r]r) -- prob x)

In chaotic dynamics, searching for a low-

dimensional characterization of the system is of

great interest. Let q(t,x) be a measured temporal

signal or time series at position x, which is

embedded in a d-dimensional phase space by a time

delay _. The set Z(t) = [Zl(t) ..... Zd(t)] is regarded as

a trajectory in the d-dimensional phase space. The

distance between two points Z(ti) and Z(tj ) is given
by d/j, and for a small e >0, let Ncl(n,e) be the

number of pairs of points with distance

d_j < E. Then the correlation sum Cd(e) and the
correlation dimension D(d), for given d, are defined
by Grassberger and Procaccia 26 as

Cd(e ) : lim 2Nd(n'e)
n---_o, n(n - 1)

Dcl = lim log Ca(e )
_0 log E

For computation, the parameters "_ and d must be

chosen properly, and the correlation dimension D d is

estimated by

log ca(,,, e)oa=
log e

for a sufficiently small e and large n. The estimated

dimension D is taken as the asymptotic value of Da

as the embedding dimension d increases.

Given the estimated dimension D and using the
method advocated by Grassberger and Procaccia, 26

the Lyapunov exponent, which is one of the most
important characteristics in the dynamics system,

can be approximately computed. Several methods

exist for computing the Lyapunov exponents. 12, 22, 24,
26--29 The Eckmann-Ruelle method 28 is used herein.

Consider Z(t) as the trajectory of a dynamic system
in the phase space of dimension d = D, obtain the

tangent (linear) maps Ti = 1, 2 ..... k of this

reconstructed dynamical system by a least-squares
fit, decompose Ti into an orthogonal matrix Qi and an

upper triangular matrix by T 1 - QIRI and

T_Qi-t = Q,R, for i>_ 2, and compute the Lyapunov

exponents as

_-i = lim _ Iog(Rk_l ... R2R I )ii

for i = 1,2 ..... D. For details see Eckmann-Ruelle

algorithm given by Conte and Dubois 27 and
Maestrello. 13

4. Results

Time series for short-time signal processing is

applied to identify the input wall pressure and panel

response to stabilize a complex surface vibration.

The time series of chaotic signals has broadband

components, and we select conditions such that the
data are of low dimension where the noise is of

minimum influence.

4.1. Wall Pressure

Now look at the input acoustic field. Some

details of the analysis of the experimental results

along with physical argument are given. The surface

pressure fluctuations with 138 dB input acoustic

power were measured on the rigid surface of the tear

stopper between panels because the pressure

transducer cannot be mounted on the vibrating panel

without altering the response (Figure 1). The loading

is induced by the sound from four nonharmonic

frequencies corresponding to fl = 387, f2 = 425,

f3 = 512, and f4 = 687 Hz. The measured real-time

pressure p(t) of the time series over the interval T,

the computed power spectral density P0e, T), the

phase plots of the computed p(t) versus p(t), and

the computed probability density Q(r,T) are shown in

Figure 2. The real-time wall pressure p(t) shown for
an interval of 0.04 sec near the instant T is used to

evaluate the spectrum, phase, and probability. The

time series of the data is not periodic over short or

over an extended time, the spectrum is dominated by

four basic forcing frequencies and harmonics, the
phase plot indicates divergency and nonsymmetry in

time, and the probability plot is clearly non-Gaussian

with large standard deviation. Simultaneous spatial

pressure measurements along the tear stopper
indicate minor changes in amplitude and phase. The

analysis suggests that the wall pressure data came

from few degrees of freedom, and it is natural to look

to the low frequencies and large scale as the origin

of the low-dimensional signals.

3
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4.2. Panel R¢_pons¢

Chaotic time series are observed routinely in our

experiments. The characterization of irregular.

broadband response is generic in nonlinear dynamic,

and the extraction of physically and useful

information including controlling uncorrected region

of chaos is part of the following presentation.

4.2.1. Se_,rch for Initial Forcing Parameters; on

Long-Term Response. It is well known that the

periodic forcing of a nonlinear dissipative dynamical

system can lead to chaos. A simple example is the
Duffin-Holmes oscillator, 30 a periodically forced

Duffin equation. Similar to the sensitive dependence
on the initial condition, the chaotic transition

depends sensitively on the initial forcing condition,

such as the amplitude and frequency of the forcing

function. In fact it is such a sensitive dependence on

the initial forcing parameter that has suggested the

idea of using a weak periodic external force to
control the chaos. In the case of Duffin-Holmes and

related equations, such a control technique was

illustrated in the papers by Braiman and

Goldhirsch 3t and Chacon and Bejarano 32 among
others.

In the experimental investigation, the dynamical

system is governed by a nonlinear partial differential

equation for curved elastic panel, which is difficult

to deal with. As a crude simple model, regarding the

panel as a lumped-parameter system is assumed to

satisfy a generalized Duffin-Hoimes equation such as

d2w

P_t2 + Otw + _w 3 = pw(a, CO,t)

where 9 and c_ and 13are effective system parameters

corresponding, respectively, to the density and the

elastic constant, and p is the initial forcing field of

the wall pressure. In contrast with the periodically

forced case, the forcing function is assumed to be

quasiperiodic of the form:

n

p(a, oo,t)= _aicos(ooit + Oi)
i=1

with given forcing parameters = the amplitudes

lal, a2 ..... an) = a, the circular frequencies

((,01,OJ 2 ..... _n)=O_, and the phases _t,02 ..... _n
where the frequencies are assumed to be

incommensurate. Theoretically the transition to

chaos caused by quasipcriodic forcing is not well

understood. Based on the result of the monofrequency

case mentioned previously, it is possible to suppose

that the chaotic transition due to a quasiperiodic

forcing depends on the initial forcing parameters a i

and COi as well. The experimental result seems to
confirm this conjecture.

In the experimental study, for the initial forcing

field, the wall pressure p is induced by an acoustic

incident plane wave with four given frequencies:

fi = 387,f2 = 425, f3 = 512, and f4 = 687 Hz, where

0_ i

f/ =_-_, i=1,2,3,4.

To begin, the initial forcing amplitudes a i are

kept small. As time progresses, the amplitude

increases gradually to drive the system into chaotic

state. In each run, the panel response g(t) (the panel

acceleration) and transmitted acoustic pressure Pr(t)

are measured. The results show that the chaotic

panel response depends strongly on the forcing

conditions, the parameters a i in this case. The

acceleration response g(t)- d2-----_wof the panel, as
- dt 2

the amplitudes a i increase in time to a set of

constant postchaotic transition values, is shown in

Figure 3 where a nonsymmetrical panel response g(t)
is indicated in the chaotic regime. Based on the

measurement data, the finite time T, the wall

pressure p(t), the panel response g(t), and the
transmitted pressure Pr(t) and then, by the Fourier

transform, the corresponding spectral density

functions of the wall pressure P(f,T), the panel
response G(fT), and the transmitted pressure Pr(f,T)

are calculated. At low frequency, a comparison of

the spectral density is made in Figure 4. As

expected, the wall pressure spectrum P(f,T) shows
peaks at the four initial frequencies ft to f4. The

panel response spectrum G(f,T) exhibits robust peaks
at the same four forcing frequencies, fl to f4, and, in

addition, at the subharmonics l/2ft and 1/2f2 as

well as the harmonics 2ft and 2f2 • The other peak

frequencies are incommensurable. The transmitted

pressure spectrum Pr(f,T) also shows the same four

peaked forcing frequencies with subharmonics and

harmonics. Thus, from the experimental evidence it

is seen that at low frequencies, the four basic forcing
frequencies fl to f._ appear prominently in both the

panel response and the transmitted pressure power

spectra.

4
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To suppress the chaos, in view of the sensitive

dependence on the initial tk_rcing parameters, it is

sensible to use a weak quasiperiodic forcing

u(e. co,0. t) as a control. In particular t, is taken to be

4
co.0.,) z cos(co,,÷oi)

i=1

where COi, i = 1,2,3, 4, represents the initial forcing

frequencies, and the amplitudes EI, E2,£3, and E4,

which are small, and the phases 0t,02,03, and04

are to be adjusted experimentally to suppress the

chaos. In practice the forcing frequencies fi may not
be measured. Then, at least for the low-frequency

case, they may be identifiable, amid the

subharmonics and harmonics, from the peak

frequencies in the panel response and transmitted

pressure power spectra G(f,T) and Pr(f,T). Such peak
frequencies are selected as possible forcing

frequencies as a trial control function u. The

possibility is tested in sections 4.2.2 and 4.2.3 as part
of the chaos control strategy.

4.2.2. Uncontrolled and Controlled Response

From Multifreq_¢ncy Loading. Measurements of the

panel response are made simultaneously at two

points along the centerline, at one-quarter and three-

quarters length. Figures 5 and 6 show the

acceleration response g(t) of the time series over the

time interval T, the computed power spectral density

G(f,T), phase plot of the computed g(t) versus g(t),

and the computed probability density "Q(r, T). Also,

panel response g(t) versus controller response c(t)

and controller response c(t) are shown in Figure 5. A

particular feature of the power spectra is the

appearance of numerous incommensurate frequencies

mixed with harmonics and subharmonics. The abrupt

changes occurring in the time series have been

previously observed 33 to be the result of frequency

locking among previously incommensurate

frequencies. Then the appearance of chaos, behind

the locking state, was described to be the loss of

synchronization between frequency locked modes.

The temporal evolution of the power spectra showed

pulsating chaotic behaviors from nonlinear coupling
among modes waves. We determine whether the
nonlinear determinism can be detected even when

mixed with probable noise from the measured time

series. We estimate the dimension and Lyapunov

exponent over a finite time interval T. The results

indicate that a significant number of exponents are

positive. (See section 5.) The response of the two

accelerometers symmetrically placed on the panel

indicates loss of correlation for high input and

indicate correlation at lower input level. The

difference in response between accelerometers is

shown by the time series in Figures 5(a) and 6(a),

and by the power spectra levels and distributions in

Figures 5(b) and 6(b). The phase portrait plots are

skewed indicating unsymmetrical response, and the

probability plots are non-Gaussian with a larger
standard deviation than at a lower level in Figures

5(c), 5(d), 6(c), and 6(d). The controller is virtually

driven by the panel response in an uncontrolled state

in Figures 5(e) and 5(f). In general, power spectra

are very good for the visualization of periodic and

quasiperiodic phenomena and their separation from

chaotic time evolution. However, the analysis of

chaotic responses themselves do not benefit much

from the power spectra, because they lose phase

information, which is essential for the understanding

of what happens on the strange attractor. In the latter

case, the dimension of the attractor is no longer

related to the number of independent frequencies in

the power spectrum, and the dimension has been

related to the concept developed for the

experimental technique and data analysis in
section 3, with details obtainable. 28, 29

Active control of the panel response is achieved

at low input power by using time-continuous

feedback, carefully tuned at each initial condition

frequency. 1 Active control is sensitively dependent

on the initial condition; the knowledge of it is a

requirement for achieving control via stability

principles (section 4.2.1). The broadband response is

generated by four frequencies: fl = 387, f2 = 425,

f3 =512, and f4 = 687 Hz (Figures 5(b) and 6(b)).

The controller is symmetrically placed between two
accelerometers and tuned at all initial conditions.

The amplitude increases at each forcing frequency

when control is applied; the phases are adjustable for

achieving control. Amplitude reduction starts at the

highest frequencies. The amount is related to the

power input to the controller for each initial
condition frequency selected during the initial part of

the run. As the amplitude of the forcing frequencies

increase, reciprocally the amplitude of all other

frequencies decreases with slope greater than l/f.

Results indicate that part of the energy is transferred

from high to lower frequencies and part is dissipated.
A different control mechanism was used in an earlier

experiment in which the energy from the high-

frequency harmonics, superimposed on a turbulent

boundary layer in accelerated flow, accumulate into

5
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lhe fundamental during the control process with very

low dissipation. 8 In our present experiment, control

is achieved by actively forcing all tour fundamentals

(section 4.2.1) through phase and amplitude tuning

procedures with several stage adjustments. [n stages,

the controller forces the panel with amplitude and

phase variations so that the energy of the high-

frequency band is shifted toward the forcing

frequency. Active control is not straightforward, and

the desired control is not always achievable. The

final results indicate that the medium- and high-

frequency broadband response is reduced on the

average by about 3 decays in amplitude. The time

trace amplitude is also reduced, and the response

changes into quasiperiodic state. The effectiveness of

the active control is noticeable by the phase portrait

and probability distributions. Further reduction may

be obtainable by increasing the input control power;

however, it may not be practical because the

controller power approaches the loading power.

Control is then achieved by destructive interference.

4.2.3. Uncontrolled and Controlled Response

From Monofrequency I_oading. To widen the scope

of the experiments, monofrequency loading f= 1050

Hz was used to illustrate the response and active

control. Figures 7(a) and 7(b) show the uncontrolled

and controlled power spectral density, an example in

which the controller input is obtained with

knowledge of the initial condition of the panel

dynamics. Results indicate that monofrequency

loading can induce broadband response. Active

control reduces the broadband spectrum to a periodic

spectrum, fundamental and harmonics. The

harmonic frequencies maintain nearly constant

amplitude, whereas the control spectrum from

multifrequencies forces rapidly decay previously

discussed (Figures 5 and 6).

Figure 7(c) shows an additional example of

controlled power spectral density, in which the
controller frequency f= 2100 Hz does not correspond

to the forcing frequency f= 1050 Hz. This is a case

in which control is applied indiscreetly at the same

(arbitrary) peak frequency. This example

demonstrates when the control frequency does not

correspond to the forcing frequency, control is not

achievable via stability approach. Figure 7(c)

indicates that spectrum level and distribution are

virtually unaffected when compared with Figure 7(a).
From the experiment we learn that, when the control

frequency does not correspond to the initial

condition, frequency control is achievable by

destructive interference when the control power

approaches the loading power. On the other hand,
when control is obtained with the use of the initial

condition, the power required is very small.

5. Correlation Dimen_ign an0 I,,yapunov Exponents

The possibility of derived relationships between

the correlation dimension D and Lyapunov exponents

by using the Grassberger and Procaccia algorithm

has been previously described. 26 The fundamental

role played by Lyapunov exponents in defining

chaotic dynamics has stimulated the search for a

statistical framework within which the accuracy of
estimated exponents might be quantified. 24

Confidence bounds on estimation are of great

interest. Experimental observations are limited, and

it is in the finite time that Lyapunov exponents are of

interest in our data analysis. First the dimension of
the attractor was determined to be related to the

number of degrees of freedom of the panel response,
a method described by Ruelle; 24 Screenivasan; 34

Abraham, Gollub, and Swinney; 9 and Sahay and

Screenivasan. 35 To compute the dimension, we

choose a range of size over which the scaling is to

be estimated. The number of dimensions of the panel

response increases with the increase in acoustic

power level. The computation procedures have been

previously illustrated by Conte and Dubois 27 and
Maestrello. 13

Figure 8 shows the computed exponents

_.2,_.4,_.6, versus the embedding time (D-1)'_

obtained from the acceleration response of the panel

from the time data typical of uncontrolled response

in Figure 5(a). Only the values of the largest

positive exponents are shown; most of the exponents

are positive. Even a single positive exponent is

sufficient proof that the attractor of the system is

chaotic. As a conservative rule, 16 bits of precision

are used for the experimental calculations. When the

panel input acoustic loading is reduced, the largest
Lyapunov exponent values decrease, and they

become negative.

6. (_onqlusion$

The active control of broadband chaos response

on a panel structure with two selected examples has
been illustrated. Many others could be cited. Much

effort has been spent on the control of chaos,

because in practice it may be impossible to avoid.

We have observed the inherent sensitivity of the

panel response to initial condition displaying chaotic

behaviors. Chaos response was anticipated from the

6
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experimental time series and by the numbers of

subharmonics and harmonics in the spectra. The

chaotic state is of low dimension established by the

Lyapunov exponent test, The loading is temporally
chaotic and weakly spatiotemporally correlated.

We experimented with the controlling

mechanism using small perturbations about the

initial condition with controlling signal power far

below the power produced by the chaotic system

response. The complexity of chaos and the sensitivity

to small perturbations to initial condition are

combined to control the responses. We demonstrated
stabilization and control of chaos on time-continuous

feedback, carefully tuned with each initial condition.

The feedback controller is easy to implement; it

stabilizes broadband chaos on a panel efficiently and
is resistive to exterior noise.

Destructive interference and damping are the

two most popular control methods in the literature;

however, they are not part of the rapid progress made

in understanding the dynamics of deterministic

nonlinear systems, especially chaos, dimensionality,

Lyapunov exponents, initial condition, and control by

low power feedback.

Finally, some practical guidelines indicate that
active control is achievable because the initial

conditions are determined. In a flight experiment

where the structure response is related to the load,

that is, the wall pressure difference, the initial
condition needs to be determined in order that the

stability control law may be effectively applied.

These developments have raised further new

interesting questions and potentialities.
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